Investigation of Pharmacodynamic and Predictive Biomarkers to Define Response to Proteasome Inhibitor Marizomib in Glioma

Daniela A. Bota1, Annick Desjardins2, Warren Mason3, Howard Fine4, Kaijun Di1, Ann MacLaren5, Nancy Levin5, Steven Reich5 and Mohit Trikha3

Introduction

Proteasome inhibitors (PIs) have been employed with clinical success in multiple myeloma, but have been much less effective in solid tumors, despite the central role of the proteasome in controlling cellular metabolism. Marizomib (MRZ) is a novel second generation proteasome inhibitor which binds irreversibly to and inhibits the enzymatic activities of all three subunits of the proteasome. The unique ability of MRZ among PIs to cross the blood-brain barrier, combined with its pan-proteasome activity, suggest that MRZ may have distinct therapeutic advantages over the approved PIs in the treatment of glioma. Preclinically, MRZ inhibits glioma cell proliferation and invasion and shows anti-tumor activity in intracranial glioma models (Di, 2015, Neuro Oncol.). Here we present interim results of a Phase I clinical trial of MRZ in combination with bevacizumab (BEV) in WHO Grade IV recurrent glioma (NCT02335862) and preliminary pharmacodynamic and predictive biomarker data.

Results

MRZ-108 Study Objectives & Design

Primary: Determine the MTD and RP2D of the combination of MRZ and BEV
Secondary: Evaluate safety and activity of MRZ + BEV
Exploratory: Evaluate baseline proteasome activity, neurological coordination (SARA), and quality of life assessment (FACT-G/FACT-B)

MRZ + BEV: All Related Grade 3 AEs (n=12)

<table>
<thead>
<tr>
<th>Preferred Term</th>
<th>Cohort 1 (n=6)</th>
<th>Cohort 2 (n=3)</th>
<th>Cohort 3 (n=3)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-L activity</td>
<td>MRZ</td>
<td>MRZ</td>
<td>MRZ</td>
<td>0.55 mg/m²</td>
</tr>
<tr>
<td>C-L activity</td>
<td>MRZ</td>
<td>MRZ</td>
<td>MRZ</td>
<td>0.7 mg/m²</td>
</tr>
<tr>
<td>T-L activity</td>
<td>MRZ</td>
<td>MRZ</td>
<td>MRZ</td>
<td>0.8 mg/m²</td>
</tr>
</tbody>
</table>

MRZ Clinical Activity

MRZ PK Parameters

- No Grade 4 or 5 AEs reported
- MRZ results in complete and persistent inhibition of CT-L proteasome activity
- MRZ + BEV demonstrated 42% (5/12) PR rate, with durable responses in some patients
- MRZ-108 study is currently being expanded at 0.8 mg/m² MRZ to further evaluate safety and efficacy
- MRZ has a short T1/2 and large Vd
- MRZ + BEV treatment was associated with reduced blood-brain barrier permeability
- MRZ inhibits compensatory hyperactivation of T-L and C-L proteasome activities

MRZ PK Parameters

- T-L and C-L inhibition more significant in Cohort 2 suggesting possible dose dependent inhibition of T-L and C-L activities
- Two subpopulations of proteasome enzymatic activity exist in archival glioma tumor bank samples; high and low proteasome activities were identified in high grade glioma (HGG) samples (circled in red)
- Proteasome catalytic subunit mRNA expression was analyzed in the same archival HGG tumor bank samples and was also shown to be variably expressed and elevated in a subset of samples. No correlation was observed between samples with high enzymatic activity and high mRNA expression
- A linear correlation was observed between T-L and C-L mRNA expression

Summary & Conclusions

- In this study we demonstrate that MRZ + BEV is well tolerated up to 0.8 mg/m² MRZ in Grade IV glioma patients
- MRZ + BEV demonstrated 42% (5/12) PR rate, with durable responses in some patients
- MRZ-108 study is currently being expanded at 0.8 mg/m² MRZ to further evaluate safety and efficacy
- MRZ has a short T1/2 and large Vd
- Significant inhibition of all three proteasome subunits was observed
- Compensatory hyperactivation of T-L and C-L was observed, followed by subsequent inhibition
- More effective inhibition of T-L and C-L subunits was observed with a higher MRZ dose, suggesting PD activity in PWB may be utilized to determine maximal pharmacological proteasome inhibition
- Variable and elevated proteasome activity was detected in HGG tumor bank samples suggesting that there may be potential for variable response to proteasome inhibition in glioma
- No correlation between proteasome enzymatic activity and mRNA expression was observed
- Current preclinical studies are evaluating whether there is a correlation between MRZ sensitivity and proteasome catalytic subunit mRNA levels

Key Eligibility Criteria

- ≥ 18 years
- Histological evidence of G4 malignant glioma in first or second relapse
- No prior proteasome inhibitor or anti-angiogenic therapies
- KPS ≥ 70