Targeting Proteasome Activity with Marizomib as a Therapeutic Perspective for Glioma Patients

Shahrzad Jalali¹, Ann MacLaren², Francis Burrows², H. Arteo Luchman³, Mohit Trikha², Gelareh Zadeh¹ and Kenneth Aldape¹

¹ Princess Margaret Cancer Center, University of Toronto, ON, Canada; ² Triphase Accelerator, ON, Canada & CA, USA, ³Hotchkiss Brain Institute, University of Calgary, AB, Canada

Abstract

Inhibition of the Ubiquitin-Proteasome pathway offers promise for the treatment of gliomas, however, this treatment strategy is unproven as the approved drugs in this class do not penetrate the CNS. Marizomib is a novel second-generation proteasome inhibitor, with advantages over bortezomib and carfilzomib, including irreversible inhibition of all three enzymatic activities of the proteasome and superior tolerability. While there are some promising data in preclinical models of solid tumors using proteasome inhibitors, marizomib has also proven to be active in intracranial glioma xenografts, prompting the initiation of a Phase I trial in glioblastoma (GB) in combination with bevacizumab (BEV). We aim to identify potential biomarkers that would enable prediction of response to marizomib in GB patients.

Tumor tissues obtained from glioma patients at Toronto Western Hospital were utilized for proteasome activity assays. Results demonstrate a significant increase in all proteasome activities, chymotrypsin-like (CT-L), trypsin-like (T-L), and caspase-like (C-L) in GB tumors compared to normal brain tissues. Furthermore, progression of low grade astrocytoma to GB is also associated with enhanced CT-L and T-L activities, indicating that targeting these subunits could potentially inhibit the progression of gliomas.

In conclusion, marizomib represents a potential therapeutic agent for GB. Further investigation is necessary to assess the therapeutic benefits of marizomib as a single agent or in combination with other agents.

Results

Differential sensitivity to proteasome inhibition in patient derived glioma cells

Strong correlation between CT-L & C-L proteasome activities in glioblastoma samples

Summary & Conclusions

• In this study we demonstrate that proteasome activity is elevated in glioblastoma patient tumor lysates, and that patients segregate into two groups with high or low proteasome activity
• A strong correlation was observed between high CT-L and C-L proteasome activities, suggesting that enzymatic activities within the proteasome may be coordinated and that pan-proteasome inhibition may be necessary to fully inhibit proteasome function in glioma
• Proteasome activity was elevated in both primary and recurrent glioblastoma compared to normal brain tissue, suggesting that proteasome inhibition may also have utility as a first-line therapy
• Marizomib is a novel irreversible pan-proteasome inhibitor that is currently being evaluated in combination with bevacizumab in grade IV glioma
• Future studies will evaluate sensitivity of glioma stem cells (GSCs) to marizomib to determine whether differential proteasome activity can predict response to marizomib in treatment resistant GSCs